

2025 Tall Fescue, Bromegrass, and Meadow Fescue Report

G.L. Olson, S.R. Smith, C.D. Teutsch, T.D. Phillips, and B.L. Hendrix, Plant and Soil Sciences

Introduction

Tall fescue (*Festuca arundinacea*) is a productive, well-adapted, persistent, soil-conserving, cool-season grass grown on approximately 5.5 million acres in Kentucky. This grass, used for both hay and pasture, is the forage base of most of Kentucky's livestock enterprises, particularly beef cattle.

The majority of tall fescue in Kentucky is infected with an internal fungus (endophyte) that produces ergot alkaloids and results in decreased weight gains in growing ruminants and lower pregnancy rates in breeding stock, especially in hot weather. Varieties are now available that are free of this fungal endophyte or contain a nontoxic endophyte. Varieties in the latter group are also referred to as novel endophyte varieties, because their endophyte improves stand survival without creating animal production problems.

Smooth bromegrass (*Bromus inermis*) is a perennial pasture and hay grass native to Europe. Smooth bromegrass has creeping underground stems or rootstocks from which the leafy stems arise. This grass is palatable to all classes of livestock, from emergence to the heading stage. Meadow bromegrass (*Bromus biebersteinii*) is a native of southeastern Europe and the adjacent Near East. It resembles smooth bromegrass but only has short rhizomes or none at all. Meadow bromegrass is densely tufted and has a similar growth habit to tall fescue and has the advantage of greater seedling vigor than smooth bromegrass. Hybrid bromegrass is a cross between smooth and meadow bromegrasses that combines the vigorous growth of smooth bromegrass with the leafiness and good regrowth of meadow bromegrass. Alaska bromegrass (*Bromus sitchensis*), also called Sitka bromegrass, is a long-lived perennial bunchgrass that grows at moderate rates during the spring and summer season. It does not spread by rhizomes and is more suited to environments with harsh winters.

Prairie bromegrass (*Bromus waldenii*) is a tall, cool-season, leafy, short-lived, perennial, deep-rooted bunchgrass. It was introduced from South America. Seedheads are produced throughout the growing season. To maintain productive stands for several years, it is necessary to manage at least one growth cycle each year for seed production and natural reseeding. Some prairie bromegrasses are susceptible to winterkill. Mountain bromegrass (*Bromus marginatus*) is native to North America from Alaska to northern Mexico, where it can be found in many different habitats. It is a short-lived, perennial, cool-season, sod-forming grass. Mountain bromegrass' leafy growth and deep, well-branched root system give erosion protection on sloping ground. It is similar to California bromegrass (*Bromus carinatus*), and some consider them to be synonymous. Compared to tall fescue, the bromegrasses retain quality better as they mature and grow better during dry weather. However they are generally less well adapted to Kentucky conditions.

Meadow fescue (*Festuca pratensis*) is a semibunch type cool season European grass that has great winter hardiness. It will yield slightly less than tall fescue and orchardgrass, but has better digestability and palatability for grazing applications.

This report provides Kentucky yield trial data on varieties of tall fescue and similar grass species as well as guidelines for selecting tall fescue varieties. Consult the UK Forage Extension website (<https://forages.mgcafe.uky.edu>) to access all forage variety testing reports from Kentucky and surrounding states as well as a large number of other forage publications.

Table 1. Temperature and rainfall at Lexington, Kentucky, in 2024 and 2025.

	2023				2024				2025 ²			
	Temperature		Rainfall		Temperature		Rainfall		Temperature		Rainfall	
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	44	+13	6.28	+3.42	32	+1	5.50	+2.60	27	-4	2.80	-0.06
FEB	47	+12	3.73	+0.52	44	+9	3.90	+0.70	37	+2	6.10	2.89
MAR	48	+4	4.45	+0.05	49	+5	3.50	-0.90	49	+5	3.90	-0.50
APR	58	+3	2.36	-1.52	58	+3	3.90	0.00	57	+7	10.80	6.92
MAY	65	+1	2.53	-1.94	67	+3	4.60	+0.10	62	-2	7.30	2.83
JUN	72	0	6.75	+3.09	74	+2	2.40	-1.30	75	+3	8.20	4.54
JUL	78	+2	5.32	+0.32	77	+1	2.50	-2.50	79	+3	3.90	-1.10
AUG	76	+1	2.40	-1.53	75	0	3.30	-0.60	73	+2	1.80	-2.13
SEP	71	+3	0.99	-2.21	70	+2	6.20	+3.00	70	+2	2.70	-0.50
OCT	61	+4	2.30	-0.27	58	+1	0.30	-2.30	58	+1	8.10	6.13
NOV	49	+4	1.70	-1.69	50	+5	3.80	-0.41				
DEC	44	+8	2.41	-1.57	40	+4	3.9	-0.08				
Total			41.22	-3.33			43.80	-0.75			55.60	18.40

¹ DEP is departure from the long-term average.

² 2025 data is for ten months through October.

Important Selection Considerations

Local adaptation and seasonal yield. Select a variety that is well adapted to Kentucky, as indicated by good performance across years and locations in replicated yield trials such as those presented in this publication. Choose high-yielding persistent varieties and varieties that are productive during the desired season of use.

Tall fescues are often classified as either “Mediterranean” or “continental” types according to the area from which the parental material for the variety originated. In general, the Mediterranean types (e.g., Cajun and Fawn) are more productive in the fall and winter than the continental types (such as Kentucky 31). Compared to continental types, Mediterranean types mature earlier in spring and become dormant and nonproductive during the summer in Kentucky. They are also more susceptible to leaf diseases such as *helinthosporium* and *rhizoctonia*. Therefore, Mediterranean varieties are less preferred for use in Kentucky than continental types. Because Mediterranean varieties mature earlier in the spring, first-cutting yields are generally higher when the two types are harvested at the same time. However, the continental types produce more in the summer.

Endophyte level. Seed with infection levels of less than 5 percent is regarded as endophyte-free. Several varieties, both with and without the endophyte, are adapted for use in Kentucky. With the new “novel endophyte” tall fescues, the seed tag should specify the infection level. Seed of novel tall fescues should be handled carefully to preserve this infection, which means keeping seed cool and planting as soon as possible. Novel endophyte varieties need a high infection level to improve stand survival. Look for Alliance for Grassland Renewal seed quality assurance printed on each bag of novel fescue seed (grasslandrenewal.org).

Seed quality. Buy premium-quality seed that is high in germination and purity levels and free from weed seed. Buy certified seed of improved varieties. An improved variety is one that has performed well in independent trials. Please check label for the test date (which must be within the previous nine months), the level of germination, and the amount of other crop and weed seed. Order seed well in advance of planting time to ensure that it will be available when needed.

Table 2. Temperature and rainfall at Princeton, Kentucky, in 2024 and 2025.

	2024				2025 ²			
	Temperature		Rainfall		Temperature		Rainfall	
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP
JAN	33	-1	6.42	+2.62	30	-2	5.6	+1.8
FEB	47	+9	1.68	-2.75	38	0	8.8	+4.37
MAR	52	+5	1.4	-3.54	53	+6	3.7	-1.24
APR	61	+2	3.44	-1.36	61	+2	14.3	+9.5
MAY	70	+3	8.92	+3.96	66	-1	6	+1.04
JUN	75	0	4.36	+0.51	77	+2	6.5	+2.65
JUL	77	-1	3.56	-0.73	81	+3	2.8	-1.49
AUG	76	-1	0.4	-3.61	65	-12	0.5	-3.51
SEP	72	+1	6.57	+3.24	73	+2	4.3	+1.25
OCT	62	+3	0.43	-2.62	61	+2	5.1	+2.05
NOV	55	8	8.7	4.07				
DEC	44	5	5.8	0.46				
Total			51.68	0.55			57.6	+15.62

¹ DEP is departure from the long-term average.

² 2025 data is for the ten months through October.

Description of the Tests

Data from twelve studies are reported. Tall fescue varieties were sown at Lexington (2022, 2023, and 2024), Princeton (2023) and Quicksand (2024). Bromegrass varieties were sown in Lexington in 2022, 2023, and 2024. Meadow fescue varieties were sown in Lexington in 2022, 2023, and 2024. The soils at Lexington (Maury), Princeton (Crider) and Quicksand (Nolin) are well-drained silt loams and are well suited for tall fescue, bromegrass and meadow fescue production.

Seedings were made at the rate of 25 pounds per acre for tall fescue and meadow fescue and 20 pounds per acre for bromegrass into a prepared seedbed with a disk drill. Plots were 5 feet by 20 feet in a randomized complete block design with four replications with a harvested plot area of 5 feet by 15 feet. Nitrogen was topdressed at 60 pounds per acre of actual nitrogen in March, after the first cutting, and again in late summer, for a total of 180 pounds per acre over the season. The tests were harvested using a sickle-type forage plot harvester to simulate a spring cut hay/summer grazing/fall stockpile management system. The first cutting was harvested when all tall fescue and bromegrass varieties were at the boot stage or later. Fresh weight samples were taken at each harvest to calculate dry matter production. Management practices for these tests regarding establishment, fertility (P, K, and lime based on regular soil tests), weed control, and harvest timing were in accordance with University of Kentucky recommendations.

Results and Discussion

Weather data for Lexington, Quicksand, and Princeton are presented in tables 1 through 3. Ratings for maturity (see Table 4 for maturity scale), stand, and dry matter yields (tons/A) are reported in tables 5 through 15. Yields are given by cutting date for 2025 and as total annual production for all years of the trial. Stated yields are adjusted for percent weeds, therefore the tonnage given is for crop only. Varieties are listed by total yield in descending order. Experimental varieties are listed separately at the bottom of the tables.

Table 3. Temperature and rainfall at Quicksand, Kentucky, in 2025.

	2025 ²			
	Temperature		Rainfall	
	°F	DEP ¹	IN	DEP
JAN	28	-3	4.50	+0.95
FEB	44	+11	6.40	+2.80
MAR	52	+11	2.40	-1.94
APR	59	+6	8.80	+4.70
MAY	63	+1	9.30	4.82
JUN	75	+5	4.30	-0.36
JUL	79	+5	10.70	5.85
AUG	73	0	0.50	-3.51
SEP	69	+3	4.20	0.68
OCT	57	+3	3.20	0.29
NOV				
DEC				
Total			54.30	14.98

¹ DEP is departure from the long-term average.

² 2025 data is for the ten months through October.

Table 4. Descriptive scheme for the stages of development in perennial forage grasses.

Code	Description	Remarks
Leaf development		
11	First leaf unfolded	Applicable to regrowth of established (plants) and to primary growth of seedlings.
12	2 leaves unfolded	
13	3 leaves unfolded	
...	...	
19	9 or more leaves unfolded	
Sheath elongation		
20	No elongated sheath	Denotes first phase of new spring growth after overwintering. This character is used instead of tillering which is difficult to record in established stands.
21	1 elongated sheath	
22	2 elongated sheaths	
23	3 elongated sheaths	
...	...	
29	9 or more elongated sheaths	
Tillering (alternative to sheath elongation)		
21	Main shoot only	Applicable to primary growth of seedlings or to single tiller transplants.
22	Main shoot and 1 tiller	
23	Main shoot and 2 tillers	
24	Main shoot and 3 tillers	
...	...	
29	Main shoot and 9 or more tillers	
Stem elongation		
31	First node palpable	More precisely an accumulation of nodes. Fertile and sterile tillers distinguishable.
32	Second node palpable	
33	Third node palpable	
34	Fourth node palpable	
35	Fifth node palpable	
37	Flag leaf just visible	
39	Flag leaf ligule/collar just visible	
Booting		
45	Boot swollen	
Inflorescence emergence		
50	Upper 1 to 2 cm of inflorescence visible	
52	1/4 of inflorescence emerged	
54	1/2 of inflorescence emerged	
56	3/4 of inflorescence emerged	
58	Base of inflorescence just visible	
Anthesis		
60	Pearnthesis	Inflorescence-bearing internode is visible. No anthers are visible.
62	Beginning of anthesis	First anthers appear.
64	Maximum anthesis	Maximum pollen shedding.
66	End of anthesis	No more pollen shedding.
Seed ripening		
75	Endosperm milky	Inflorescence green.
85	Endosperm soft doughy	No seeds loosening when inflorescence is hit on palm.
87	Endosperm hard doughy	Inflorescence losing chlorophyll; a few seeds loosening when inflorescence hit on palm
91	Endosperm hard	Inflorescence-bearing internode losing chlorophyll; seeds loosening in quantity when inflorescence hit on palm.
93	Endosperm hard and dry	Final stage of seed development; most seeds shed.

Smith, J. Allan, and Virgil W. Hayes. 1981. p. 416-418. 14th International Grasslands Conference Proc. 1981. June 14-24, 1981, Lexington, Kentucky.

Statistical analyses were performed on all data to determine if the apparent differences are truly due to varietal differences or just to chance. To determine if two varieties are truly different, compare the difference between them and the LSD (least significant difference) at the bottom of the column. If the difference is equal to or greater than the LSD, the varieties are truly different when grown under the conditions at the given locations. The coefficient of variation (CV) is a measure of the variability of the data and is included for each column of means. Low variability is desirable, and increased variability within a study results in higher CVs and larger LSDs.

Tables 16, 17, and 18 show information about proprietors/distributors for all varieties studied in this report. Varieties are listed in alphabetical order by species, with the experimental varieties at the bottom. Remember that experimental varieties are not available for farm use; commercial varieties can be purchased from agricultural distributors. Remember to consider the relative spring maturity and the distribution of yield across the growing season when evaluating productivity of tall fescue and bromegrass varieties.

How to Interpret the Summary Tables

Summaries of yield data from 2007 to 2025 for tall fescue varieties, 2006 to 2025 for bromegrass varieties, and 2019 to 2025 for meadow fescue varieties are presented in tables 19, 20, and 21, respectively. The value for each variety in these tables is listed as a percentage of the mean of the commercial varieties entered in each specific trial. Varieties with percentages over 100 yielded better than average and varieties with percentages less than 100 yielded lower than average. Direct statistical comparisons of varieties cannot be made using the table 19, 20, and 21 summaries, but these comparisons can help to identify varieties for further consideration. Varieties that have performed better than average over many years and at several locations have stable performance, while others may have performed well in wet years or on particular soil types. These details may influence variety choice, and more information from past years can be found in the appropriate annual reports. See the footnotes in tables 19, 20, and 21 to determine the yearly report that should be referenced.

Summary

Selecting a good variety of tall fescue and bromegrass is an important first step in establishing a productive stand of grass. Proper management, beginning with seedbed preparation and continuing throughout the life of the stand, is necessary for even the highest-yielding variety to produce to its genetic potential.

For more information, consult the following University of Kentucky Cooperative Extension publications related to tall fescue management. These resources are available from your county Extension office and may be accessed in the “Publications” section of the UK Forage website (<https://forages.mgcafe.uky.edu>).

- Lime and Fertilizer Recommendations (AGR-1)
- Grain, Forage and Cover Crop Guide for Kentucky (AGR-18)
- Tall Fescue (AGR-59)
- Establishing Livestock Pastures and Hayfields. (AGR-64)
- Tall Fescue in Kentucky (AGR-108)
- Forage Identification and Use Guide (AGR-175)

- Rotational Grazing (ID-143)
- Tall Fescue Novel Endophyte Varieties and Establishment for Livestock and Horse Farms (AGR-275)

About the Authors

G.L. Olson is a research specialist, S.R. Smith is an Extension professor and forage specialist, C.D. Teutsch is an Extension associate professor and forage specialist, T.D. Phillips is an associate professor in tall fescue and grass breeding and B.L. Hendrix is a laboratory technician senior.

Table 5. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 9, 2022, at Lexington, Kentucky.

Variety	Endophyte Status ¹	Seedling Vigor ² Oct 25, 2022	Maturity ³			Percent Stand						Yield (tons/acre)						3-year Total	
			2023	2024	2025	2022	2023	2024	2025	2023	2024	2025	May 8	Jul 2	Aug 28	Oct ⁴	Total		
			May 3	Apr 30	May 8	Oct 25	Mar 20	Oct 17	Mar 21	Oct 18	Mar 18	Nov 5	Total	Total	May 8	Jul 2	Aug 28	Oct ⁴	Total
Commercial Varieties-Available for Farm Use																			
Estancia Arkshield	novel	2.5	54.5	54.5	57.0	96	97	97	97	97	97	97	6.51	2.88	1.46	1.03	0.67	—	3.15 12.54*
Triumphant	free	3.6	57.0	56.0	58.0	100	100	100	100	100	99	99	6.59	2.96	1.27	0.82	0.52	—	2.62 12.16*
Cowgirl	free	3.3	53.5	51.5	56.0	100	99	99	99	99	99	99	6.28	2.68	1.41	0.76	0.51	—	2.68 11.64*
Lacefield MaxQII	novel	3.8	53.5	53.0	56.0	100	99	99	100	100	100	100	5.88	2.54	1.24	1.09	0.61	—	2.94 11.36*
Greendale	free	3.8	50.0	50.0	54.5	100	100	100	100	100	100	99	6.18	2.30	1.28	1.13	0.46	—	2.88 11.35*
SS0705TFSL	free	3.5	54.5	53.0	56.5	100	98	98	99	99	99	96	6.16	2.44	1.15	1.00	0.48	—	2.63 11.24*
Cajun II	free	3.6	56.0	55.0	57.0	100	100	100	100	100	100	98	5.74	2.52	1.36	0.87	0.47	—	2.70 10.96*
Jesup MaxQII	novel	2.5	56.0	54.0	56.0	97	96	97	98	98	98	97	5.40	2.70	1.03	0.91	0.46	—	2.40 10.50*
KY31+	toxic	3.9	55.0	54.5	56.0	100	99	99	99	100	100	99	5.41	2.53	1.23	0.93	0.39	—	2.55 10.49*
Ranchero	free	2.9	55.0	55.0	56.5	99	98	98	98	98	98	98	5.07	2.47	1.31	0.85	0.46	—	2.62 10.17*
BarOptima PLUS E34	novel	2.4	47.5	50.0	54.0	98	96	97	97	97	97	97	4.89	2.34	1.16	0.79	0.48	—	2.44 9.67
Texoma MaxQII	novel	2.3	54.5	54.5	56.0	95	86	94	96	96	96	96	4.29	2.44	1.05	0.88	0.40	—	2.34 9.06
Experimental Varieties																			
GTC16081/T11044	novel	3.0	56.0	54.5	56.0	96	97	97	97	97	97	97	6.57	2.96	1.35	1.12	0.61	—	3.07 12.61*
GTC16076/T10941	novel	2.6	54.5	54.5	56.0	97	97	97	97	97	97	97	5.32	2.78	1.47	1.43	0.60	—	3.50 11.61*
GTC16077/T10942	novel	3.1	56.0	54.5	56.5	98	96	97	97	97	97	97	5.57	2.75	1.43	1.12	0.51	—	3.05 11.37*
PST-5FMP	free	1.5	45.0	51.0	54.0	93	93	94	94	94	94	94	5.45	2.78	1.17	1.30	0.63	—	3.11 11.34*
PST-5FDS	free	3.0	54.0	52.5	56.0	99	99	99	99	99	99	98	6.31	2.49	1.22	0.89	0.39	—	2.50 11.29*
GTC16082/T10947	novel	3.4	55.0	54.5	57.0	98	99	99	99	99	99	99	5.55	2.53	1.50	1.04	0.63	—	3.17 11.25*
RAD-TF119	free	2.1	54.5	54.0	56.0	97	96	96	97	97	97	97	5.74	2.70	1.34	0.91	0.56	—	2.81 11.25*
KY31-	free	3.8	52.5	52.5	56.0	99	98	98	99	99	99	99	5.59	2.52	1.34	1.09	0.48	—	2.90 11.01*
KYFA9732/AR584	novel	3.5	49.0	52.0	56.0	99	97	98	98	98	98	96	5.67	2.33	1.11	1.11	0.61	—	2.82 10.82*
GTC16078/T10943	novel	2.6	55.5	53.5	56.0	97	97	97	97	97	96	96	5.25	2.52	1.27	1.03	0.50	—	2.80 10.57*
GTC16079/T10944	novel	2.8	55.5	55.0	56.5	99	98	98	98	98	98	97	4.89	2.64	1.37	0.85	0.43	—	2.64 10.18*
FTF96	free	2.5	49.8	50.5	54.0	96	97	96	97	97	97	97	5.21	2.43	0.87	0.92	0.51	—	2.30 9.94*
PST-5FEDS	free	2.1	56.0	54.5	56.5	93	91	91	92	92	92	92	4.81	2.41	1.21	0.99	0.46	—	2.67 9.88*
GTC19068	free	2.1	56.0	54.5	56.0	95	95	95	96	96	96	96	4.20	2.32	1.12	0.97	0.45	—	2.55 9.07
Mean		2.9	53.7	53.4	56.0	98	97	97	97	98	97	97	5.56	2.57	1.26	0.99	0.51		2.76 10.90
CV%		23.3	3.4	2.0	1.1	2	4	3	3	3	3	3	24.60	13.35	24.43	23.31	27.90		19.70 18.97
LSD,0.05		1.0	2.6	1.5	0.9	3	6	4	3	3	3	4	1.93	0.48	0.43	0.33	0.20		0.77 1.91

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

³ Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=begginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=begginning of pollen shed. See Table 4 for complete scale.

⁴ There was no fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 6. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 6, 2023, at Lexington, Kentucky.

Variety	Endophyte Status ¹	Seedling Vigor ² Oct 24, 2023	Maturity ³		Percent Stand					Yield (tons/acre) ⁰					2-year Total	
			2024	2025	2023	2024		2025		2024	2025		2024	2025		
			Apr 30	May 8	Oct 24	Mar 14	Oct 18	Mar 18	Nov 5	Total	May 8	Jul 2	Aug 28	Oct ⁴	Total	
Commercial Varieties-Available for Farm Use																
Fawn	free	5.0	57.5	58.0	100	100	100	100	100	5.13	1.89	1.02	0.47	—	3.38	8.52*
SS0705TFSL	free	5.0	55.5	55.5	100	100	100	100	100	5.26	1.55	1.13	0.54	—	3.22	8.49*
Ranchero	free	5.0	56.0	57.0	100	100	100	100	100	5.00	1.85	1.11	0.50	—	3.46	8.46*
Texoma MaxQII	novel	4.6	54.0	57.0	100	100	100	100	100	4.94	1.87	1.11	0.50	—	3.48	8.43*
Greendale	free	4.9	51.5	54.0	100	100	100	100	100	5.18	1.45	1.22	0.53	—	3.21	8.39*
BarOptima PLUS E34	novel	5.0	51.0	54.0	100	100	100	100	100	5.00	1.39	1.32	0.51	—	3.22	8.22*
Jesup MaxQII	novel	4.5	56.0	56.5	100	100	100	100	100	5.00	1.53	1.10	0.49	—	3.12	8.12*
Cajun II	free	5.0	56.0	56.5	100	100	100	100	100	5.21	1.42	1.00	0.48	—	2.91	8.13
KY31+	toxic	5.0	56.0	56.5	100	100	100	100	100	5.00	1.51	1.09	0.43	—	3.04	8.04*
Lacefield MaxQII	novel	5.0	55.0	56.0	100	100	100	100	100	4.84	1.47	1.13	0.52	—	3.11	7.95*
Iliade	free	5.0	50.0	54.5	100	100	100	100	100	5.02	1.25	1.16	0.43	—	2.84	7.85*
Estancia Arkshield	novel	4.9	55.5	57.0	100	100	100	100	100	4.88	1.46	0.89	0.48	—	2.83	7.71*
Palatine	free	4.9	54.5	54.0	100	100	100	100	100	4.92	1.07	1.03	0.41	—	2.52	7.44
Experimental Varieties																
FTF-96	free	4.1	52.0	55.0	98	99	99	99	99	4.83	1.68	1.19	0.51	—	3.38	8.21*
KYFA9611	free	5.0	52.0	56.0	100	100	100	100	100	5.08	1.55	1.08	0.43	—	3.06	8.14*
SETFPC5BK	free	5.0	56.0	56.5	100	100	100	100	100	4.74	1.72	1.16	0.51	—	3.40	8.14*
SETF-SGT	free	4.9	55.0	56.0	100	100	100	100	100	5.04	1.63	0.93	0.43	—	2.99	8.03*
SETFN97	free	4.8	55.0	56.0	100	100	100	100	100	5.21	1.32	1.08	0.41	—	2.80	8.02*
KY31-	free	5.0	53.5	56.0	100	100	100	100	100	4.90	1.43	1.11	0.47	—	3.01	7.91*
KYFA1014	free	4.8	53.5	56.0	100	100	100	100	100	4.74	1.43	1.13	0.41	—	2.98	7.72*
PVF-FTF-2030	free	5.0	56.5	56.5	100	100	100	100	100	4.62	1.41	0.92	0.51	—	2.84	7.47
KYFA0304	free	4.4	53.0	56.0	99	99	99	99	98	4.32	1.44	1.08	0.49	—	3.01	7.33
Mean		4.8	54.3	55.9	100	100	100	100	100	4.95	1.52	1.09	0.48		3.08	8.03
CV, %		3.3	2.1	1.5	1	1	1	1	1	7.50	16.27	17.20	20.19		13.13	7.43
LSD, 0.05		0.2	1.6	1.2	1	1	1	1	1	0.52	0.35	0.27	0.14		0.57	0.84

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

³ Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

⁴ There was no fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 7. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 19, 2024, at Lexington, Kentucky.

Variety	Endophyte Status ¹	Seedling Vigor ² Oct 8, 2024	Maturity ³ 2025 May 14	Percent Stand			Yield (tons/acre)				
				2024		2025		2025			
				Oct 8	Mar 18	Oct 31	May 14	Jul 2	Aug-Oct ⁴	Total	
Commercial Varieties-Available for Farm Use											
Texoma MaxQII	novel	4.4	56.0	100	100	100	1.20	0.87	—	2.07*	
BigSky	free	4.9	55.5	100	100	100	0.95	1.07	—	2.03*	
Tower Protek	novel	4.5	56.5	100	100	100	1.08	0.93	—	2.01*	
KY31+	toxic	5.0	56.0	100	100	100	1.01	1.00	—	2.00*	
Teton II	free	4.8	56.5	100	100	98	1.07	0.90	—	1.97*	
Lacefield MaxQII	novel	5.0	56.0	100	100	98	1.01	0.89	—	1.90*	
Martin2 Protek	novel	4.8	56.5	100	100	100	1.10	0.78	—	1.88*	
Cajun II	free	4.8	56.0	100	100	98	1.00	0.86	—	1.86*	
Estancia Arkshield	novel	4.9	55.5	100	100	100	0.88	0.81	—	1.68*	
Triumphant Protek	novel	4.6	56.0	100	100	100	0.87	0.75	—	1.63*	
Palatine	free	4.8	55.5	100	100	93	0.94	0.67	—	1.60*	
Forza100	free	4.6	56.5	100	100	100	0.73	0.77	—	1.50	
BarOptima PLUS E34	novel	4.4	55.5	100	100	95	0.75	0.73	—	1.48	
RoyalQ200	free	4.4	56.5	100	100	98	0.71	0.74	—	1.45	
Armory	free	4.8	56.0	100	100	98	0.77	0.67	—	1.43	
Jesup MaxQII	novel	4.5	56.5	100	100	100	0.65	0.74	—	1.39	
Experimental Varieties											
KY31-	free	4.9	56.0	100	100	100	0.89	0.88	—	1.78*	
KYFA9611	free	4.6	56.0	100	100	100	0.91	0.86	—	1.77*	
BARFA137	free	4.9	55.0	100	100	99	0.98	0.74	—	1.72*	
KYFA1014	free	4.5	55.0	100	100	98	0.77	0.70	—	1.47	
GEN-FCOV	free	4.9	56.0	100	100	98	0.74	0.72	—	1.46	
KYFA0502	free	4.6	56.0	100	100	100	0.72	0.71	—	1.43	
Mean		4.7	56.0	100	100	99	0.90	0.81	—	1.70	
CV,%		6.5	1.9	0	0	4	30.36	16.80	—	19.74	
LSD,0.05		0.4	1.5	0	0	6	0.38	0.19	—	0.48	

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

³ Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

⁴ There was no late summer or fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 8. Dry matter yields, maturity, and stand persistence of tall fescue varieties sown September 13, 2023, at Princeton, Kentucky.

Variety	Endophyte Status ¹	Maturity ²		Percent Stand			Yield (tons/acre)				2-year Total
		2024	2025	2023	2024	2025	2024	2025	2025	2025	
		May 31	May 27	Nov 3	Oct 24	Apr 9	Total	May 27	Aug 29	Total	
Commercial Varieties-Available for Farm Use											
Estancia Arkshield	novel	80.0	84.3	100	100	99	4.60	2.13	1.61	3.74	8.34*
Cajun II	free	80.0	85.5	100	99	100	4.64	2.25	1.37	3.62	8.26*
SS0705TFSL	free	80.0	85.5	100	100	99	4.86	2.04	1.16	3.21	8.07*
Texoma MaxQII	novel	80.0	85.5	100	100	100	4.72	2.20	1.09	3.29	8.02*
Iliade	free	75.3	85.5	100	99	99	4.71	1.86	1.43	3.28	7.99*
BarOptima PLUS E34	novel	78.8	85.0	100	99	99	4.34	2.06	1.37	3.44	7.78*
Lacefield MaxQII	novel	78.8	83.8	100	100	99	4.59	1.95	1.24	3.19	7.77*
KY31+	toxic	80.0	85.5	100	99	99	4.64	2.10	1.00	3.10	7.74*
Ranchero	free	80.0	86.0	100	99	99	4.50	2.09	1.12	3.20	7.71*
Jesup MaxQII	novel	80.0	84.3	100	100	100	4.53	1.98	1.08	3.06	7.59*
Fawn	free	85.3	87.5	100	99	100	3.83	2.29	1.30	3.59	7.42*
Palatine	free	78.8	84.3	100	99	99	4.30	1.90	0.99	2.89	7.19
Experimental Varieties											
KY31-	free	80.0	83.8	100	99	100	4.62	2.09	1.16	3.24	7.87*
FTF-96	free	78.8	85.5	96	97	99	4.60	1.95	1.20	3.14	7.74*
PVF-FTF-20020	free	78.8	86.0	98	99	99	4.36	1.91	1.15	3.06	7.42*
KYFA1014	free	78.8	83.8	100	98	99	4.12	2.09	1.05	3.14	7.26
KYFA9611	free	77.5	85.0	100	99	100	3.19	2.35	1.42	3.77	6.96
KYFA0304	free	80.0	85.0	100	100	100	3.53	2.13	1.25	3.39	6.92
Mean		79.5	85.0	99	99	99	4.37	2.08	1.22	3.30	7.67
CV, %		2.7	2.0	1	1	1	10.25	13.91	22.31	13.48	9.32
LSD, 0.05		3.1	2.0	1	1	1	0.64	0.41	0.39	0.63	1.01

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=begins of inflorescence emergence, 58=complete emergence of inflorescence, 62=begins of pollen shed. See Table 4 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 9. Dry matter yields, seedling vigor, and stand persistence of tall fescue varieties sown September 20, 2024, at Quicksand, Kentucky.

Variety	Endophyte Status ¹	Seedling Vigor ² Oct 28, 2024	Percent Stand				Yield(tons/acre)				
			2024		2025		2025				
			Oct 28	Mar 21	Nov 14	May 25	May 25	Jul 30	Sep 9	Total	
Commercial Varieties-Available for Farm Use											
Forza100	free	4.5	98	98	98	1.87	1.54	0.98	4.39*		
RoyalQ200	free	4.1	90	93	93	2.39	1.24	0.73	4.36*		
Armory	free	4.8	98	98	98	1.23	1.41	0.76	3.40*		
KY31+	toxic	4.9	100	100	100	1.48	1.03	0.76	3.27*		
BarOptima PLUS E34	novel	4.6	100	100	100	1.69	1.11	0.47	3.27*		
Estancia Arkshield	novel	5.0	100	100	100	1.41	1.01	0.67	3.09		
Experimental Varieties											
KYFA6911GT	free	5.0	100	100	100	2.49	1.71	1.04	5.23*		
KYF1014	free	4.9	99	99	99	2.26	1.77	1.10	5.13*		
Gen-FCOV	free	4.6	100	100	100	1.82	1.50	0.99	4.30*		
KYFA0502	free	4.3	97	98	98	2.08	1.22	0.92	4.22*		
BARFA137	free	4.9	98	99	99	2.19	1.14	0.61	3.94*		
KY31-	free	4.9	100	100	100	1.46	1.18	0.75	3.40*		
Mean		4.7	98	99	99	1.86	1.32	0.81	4.00		
CV,%		7.0	2	2	2	53.46	51.18	53.46	34.95		
LSD,0.05		0.5	3	2	3	1.43	0.97	0.63	2.01		

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 10. Dry matter yields, seedling vigor, maturity, and stand persistence of bromegrass varieties sown September 9, 2022, at Lexington, Kentucky.

Variety	Type	Seedling Vigor ¹ Oct 25, 2022	Maturity ²			Percent Stand					Yield (tons/acre)					3-year Total			
			2023	2024	2025	2022	2023	2024	2025	2023	2024	2025	2023	2024	2025				
			May 5	May 1	May 7	Oct 25	Mar 20	Oct 17	Mar 21	Oct 18	Mar 18	Nov 5	Total	Total	May 7	Jun 19	Aug-Oct ³	Total	
Commercial Varieties-Available for Farm Use																			
Arsenal	meadow	4.1	57.5	56.5	60.0	95	94	96	96	94	75	30	6.70	1.95	0.99	0.85	—	1.84	10.50
CDC Torsion	meadow	3.1	56.5	56.5	59.0	95	89	90	91	87	63	25	6.26	1.95	0.88	0.89	—	1.77	10.24*
Stratus	meadow	3.6	57.0	56.5	58.5	90	90	91	91	92	65	25	6.72	1.54	0.73	0.95	—	1.69	9.95*
Admiral	meadow	4.1	57.5	58.0	59.0	98	96	96	96	93	68	33	6.20	1.44	0.84	0.90	—	1.73	9.35*
Arid	smooth	4.4	50.3	46.8	54.5	96	94	88	90	85	60	25	6.14	1.62	0.68	0.82	—	1.50	9.27*
Artillery	smooth	5.0	53.0	49.3	55.0	98	97	95	95	93	83	38	5.85	1.75	0.87	0.76	—	1.63	9.23*
Champaign	meadow	2.0	56.0	58.0	59.0	63	53	60	65	68	50	15	5.62	1.80	0.90	0.82	—	1.71	9.13*
Macbeth	meadow	4.3	57.0	57.5	59.0	95	94	94	91	89	63	30	5.90	1.35	0.82	0.85	—	1.67	8.92
Peak	smooth	3.6	50.3	51.5	54.5	96	81	81	81	80	60	20	5.31	1.58	0.60	0.89	—	1.48	8.37
AAC Torque	hybrid	2.9	55.5	54.5	55.0	87	74	71	71	71	51	18	4.80	1.43	0.61	0.74	—	1.35	7.76
Mean		3.7	55.1	54.5	57.4	91	86	86	87	85	64	26	5.98	1.64	0.79	0.85	—	1.64	9.31
CV,%		20.7	3.4	3.4	1.7	5	9	8	8	9	17	27	10.88	12.97	26.06	17.71	—	15.30	9.63
LSD,0.05		1.1	2.7	2.7	1.4	7	12	10	10	11	16	10	1.01	0.31	0.30	0.22	—	0.36	1.40

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

³ There was no late summer or fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 11. Dry matter yields, seedling vigor, maturity, and stand persistence of bromegrass varieties sown September 6, 2023, at Lexington, Kentucky.

Variety	Type	Seedling Vigor ¹ Oct 24, 2023	Maturity ²		Percent Stand				2024 Total	Yield (tons/acre)					2-year Total
			2024	2025	2023	2024	2025	2024		2024	2025	2024	2025	2024	
			Apr 22	May 7	Oct 24	Mar 14	Oct 18	Mar 18		May 7	Jun 19	Aug 28	Oct ³	Total	
Commercial Varieties-Available for Farm Use															
Arsenal	meadow	4.9	56.0	58.0	100	100	100	93	3.97	1.27	1.16	1.07	—	3.50	7.47*
CDC Torsion	meadow	3.9	52.8	57.5	100	100	100	98	3.85	1.52	0.95	0.83	—	3.29	7.15*
Admiral	meadow	4.5	55.5	57.5	100	100	100	95	4.03	1.03	0.88	0.77	—	2.68	6.71*
Artillery	smooth	4.8	47.3	54.5	100	100	100	99	3.06	1.46	1.16	0.83	—	3.44	6.50*
AAC Torque	hybrid	3.9	52.8	55.5	100	99	98	94	2.95	1.17	0.92	1.06	—	3.15	6.10
Stratus	meadow	4.4	54.5	56.5	100	100	100	89	3.28	1.09	0.95	0.76	—	2.80	6.08
Champaign	meadow	4.1	54.0	58.0	100	100	100	100	3.22	1.11	0.74	0.82	—	2.68	5.90
Peak	smooth	4.0	47.8	55.5	100	100	100	99	2.80	0.99	1.04	0.95	—	2.98	5.79
Macbeth	meadow	4.1	55.0	58.0	100	100	100	97	3.24	0.93	0.83	0.70	—	2.47	5.71
Arid	smooth	4.4	45.0	55.5	99	99	100	100	2.45	1.51	0.83	0.73	—	3.07	5.52
Experimental Varieties															
PVF-C2	meadow	3.1	52.8	58.0	99	99	99	96	3.18	1.10	0.91	0.75	—	2.75	5.93
PVF-A2	smooth	3.9	45.0	54.5	100	100	100	100	2.46	1.09	0.93	0.76	—	2.79	5.24
Mean		4.2	51.5	56.6	100	100	100	96	3.21	1.19	0.94	0.84	—	2.97	6.17
CV,%		11.5	6.8	1.5	1	1	1	5	17.20	24.62	25.66	27.76	—	20.64	14.74
LSD,0.05		0.7	5.0	1.2	1	1	1	7	0.79	0.42	0.35	0.33	—	0.88	1.31

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

³ There was no fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 12. Dry matter yields, seedling vigor, maturity, and stand persistence of bromegrass varieties sown September 5, 2024, at Lexington, Kentucky.

Variety	Type	Seedling Vigor ¹ Oct 2, 2024	Maturity ² 2025 May 7	Percent Stand			2024 Total	Yield (tons/acre)					2025
				2024	2025	2024		2024	2025	2024	2025	2024	
				Oct 2	Mar 18	Oct 31		May 7	Jun 19	Sep 5	Oct ³	Total	
Commercial Varieties-Available for Farm Use													
Admiral	meadow	4.8	59.5	100	98	98	1.27	0.78	1.11	—	—	3.17*	
Arsenal	meadow	5.0	59.0	100	99	99	1.09	0.79	1.21	—	—	3.09*	
Artillery	smooth	5.0	55.5	100	100	100	1.22	0.70	1.10	—	—	3.01*	
Arid	smooth	4.9	54.5	100	100	99	1.20	0.76	0.98	—	—	2.95*	
Champaign	meadow	3.9	58.0	94	88	81	0.89	0.70	1.29	—	—	2.88*	
Macbeth	meadow	4.6	58.5	100	99	97	1.03	0.78	1.02	—	—	2.84*	
Peak	smooth	4.8	54.5	100	99	100	0.94	0.82	1.08	—	—	2.84*	
Pella	smooth	3.6	55.0	89	83	85	0.71	0.75	1.16	—	—	2.63	
Mean		4.6	56.8	98	96	95	1.04	0.76	1.12	—	—	2.93	
CV,%		0.9	2.1	3	3	3	20.78	10.86	12.60	—	—	9.77	
LSD,0.05		0.3	1.7	4	4	4	0.32	0.12	0.21	—	—	0.42	

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

³ There was no fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 13. Dry matter yields, seedling vigor, maturity, and stand persistence of meadow fescue varieties sown September 9, 2022, at Lexington, Kentucky.

Variety	Seedling Vigor ¹ Oct 25, 2022	Maturity ²			Percent Stand						Yield (tons/acre)						3-year Total	
		2023	2024	2025	2022	2023		2024		2025		2023	2024	2025		May 13	Jun 25	Aug-Oct ³
		May 16	May 20	May 13	Oct 25	Mar 20	Oct 17	Mar 21	Oct 18	Mar 18	Nov 5	Total	Total	May 13	Jun 25	Aug-Oct ³	Total	
Commercial Varieties-Available for Farm Use																		
Raskila	4.1	56.0	56.0	50.5	99	99	99	99	65	65	45	4.06	0.70	0.48	0.36	—	0.84	5.60*
Pradel	4.0	58.0	53.0	54.0	99	99	99	99	38	45	33	4.20	0.67	0.35	0.28	—	0.63	5.50*
Hyperbola	4.1	57.0	51.5	51.5	100	100	100	97	35	35	29	3.73	0.55	0.35	0.30	—	0.65	4.93*
Experimental Varieties																		
KYFP1301	4.9	57.5	56.0	55.5	100	100	100	100	70	72	50	3.43	0.49	0.73	0.50	—	1.22	5.16
Mean	4.3	57.1	54.3	52.9	99	99	99	99	52	54	39	3.85	0.60	0.48	0.36	—	0.84	5.30
CV,%	7.3	2.0	4.1	3.5	1	1	1	2	43	22	49	16.07	21.46	39.11	35.37	—	29.05	12.58
LSD,0.05	0.5	1.9	3.5	2.9	1	1	1	4	35	19	30	0.99	0.21	0.30	0.20	—	0.39	1.07

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

³ There was no late summer or fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 14. Dry matter yields, seedling vigor, maturity, and stand persistence of meadow fescue varieties sown September 6, 2023, at Lexington, Kentucky.

Variety	Seedling Vigor ¹ Oct 14, 2023	Maturity ²			Percent Stand						Yield (tons/acre)						2-year Total	
		2024	2025	2023	2024	2025	2024	2025	2024	2025	2024	2025	2024	2025	May 21	Jun 26	Aug-Oct ³	Total
		May 9	May 21	Oct 24	Mar 14	Oct 18	Mar 18	Nov 5	Total	May 21	Jun 26	Aug-Oct ³	Total	May 21	Jun 26	Aug-Oct ³	Total	
Commercial Varieties-Available for Farm Use																		
Raskila	4.5	53.5	56.5	100	100	100	100	81	3.37	1.10	0.34	—	1.44	4.81*	—	—	—	4.81*
HDR	4.9	55.5	58.0	100	100	100	100	91	3.34	1.06	0.29	—	1.35	4.69*	—	—	—	4.69*
Pradel	4.6	56.0	56.5	100	100	99	99	20	3.24	0.81	0.34	—	1.15	4.39*	—	—	—	4.39*
Hyperbola	4.8	54.0	56.5	100	100	100	100	46	3.10	0.76	0.29	—	1.05	4.15*	—	—	—	4.15*
Mean	4.7	54.8	56.9	100	100	100	100	60	3.26	0.93	0.32	—	1.25	4.51	—	—	—	4.51
CV,%	6.4	1.8	1.5	0	0	1	1	32	11.38	18.18	22.04	—	17.03	11.22	—	—	—	17.03
LSD,0.05	0.5	1.6	1.3	0	0	2	2	30	0.59	0.27	0.11	—	0.34	0.81	—	—	—	0.81

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

³ There was no late summer or fall harvest due to below normal precipitation in July, August, and early September, resulting in insufficient regrowth.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 15. Dry matter yields, seedling vigor, maturity, and stand persistence of meadow fescue varieties sown September 5, 2024, at Lexington, Kentucky.

Variety	Seedling Vigor ¹ Oct 2, 2024	Maturity ² 2025 May 13	Percent Stand			Yield (tons/acre)						Total					
			2024	2025	2023	2024	2025	2024	2025	2024	2025						
			Oct 2	Mar 18	Oct 31	May 13	Jun 25	Sep 5									
Commercial Varieties-Available for Farm Use																	
Dells	4.9	57.0	100	100	98	1.68	0.71	0.35	—	2.75*	—	—	—	—	—	—	2.75*
Pradel	4.8	55.0	100	99	78	1.42	0.79	0.32	—	2.54*	—	—	—	—	—	—	2.54*
Driftless	4.9	52.5	100	100	100	1.29	0.74	0.43	—	2.45*	—	—	—	—	—	—	2.45*
Hyperbola	5.0	54.0	100	100	98	1.28	0.77	0.37	—	2.43*	—	—	—	—	—	—	2.43*
Carpathi	3.4	26.8	100	100	97	1.21	0.76	0.41	—	2.38*	—	—	—	—	—	—	2.38*
Raskila	3.9	52.0	100	98	99	1.03	0.84	0.30	—	2.17	—	—	—	—	—	—	2.17
Mean	4.5	49.5	100	99	95	1.32	0.77	0.36	—	2.45	—	—	—	—	—	—	2.45
CV,%	7.8	25.2	0	2	7	17.85	14.13	30.40	—	11.86	—	—	—	—	—	—	11.86
LSD,0.05	0.5	18.8	0	2	10	0.35	0.16	0.17	—	0.44	—	—	—	—	—	—	0.44

¹ Vigor score based on a scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37=flag leaf emergence, 45=boot swollen, 50=beginning of inflorescence emergence, 58=complete emergence of inflorescence, 62=beginning of pollen shed. See Table 4 for complete scale.

* Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 16. Proprietors of tall fescue varieties in current trials.

Variety	Endophyte Status	Proprietor/KY distributor
Commercial Varieties-Available for Farm Use		
Armory	free	Barenbrug USA
BarOptima PLUS E34	novel	Barenbrug USA
BigSky	free	Columbia Seeds
Cajun II	free	Smith Seed Services
Cowgirl	free	Pure-Seed Testing
Dominate	free	Allied Seed
Estancia Arkshield	novel	Mountain View Seeds
Fawn	free	Smith Seed Services
Forza 100	free	Gentos SA
Greendale	free	DLF-Pickseed
Iliade	free	Columbia Seeds
Jesup MaxQII	novel	Pennington Seed
KY31+	toxic	Ky Agric. Exp. Station/Public
Lacefield MaxQ II	novel	Pennington Seed
Martin 2 Protek	novel	DLF-Pickseed
Palatine	free	Mountain View Seeds
Ranchero	free	Smith Seed Services
Royal Q200	free	Gentos SA
SS-0705TFSL	free	Southern States
STF43	free	Barenbrug USA
Teton II	free	Mountain View Seeds
Texoma MaxQII	novel	DLF-Pickseed
Tower Protek	novel	DLF-Pickseed
Triumphant	free	DLF-Pickseed
Triumphant Protek	novel	DLF-Pickseed
Experimental Varieties¹		
BAR-FA137	free	Barenbrug USA
FTF96	free	DLF-Pickseed
GEN-FCOV	free	Gentos SA
GTC16076/T10941	free	Univ. of Georgia
GTC16077/T10942	free	Univ. of Georgia
GTC16078/T10943	free	Univ. of Georgia
GTC16079/T10944	free	Univ. of Georgia
GTC16081/T11044	novel	Univ. of Georgia
GTC16082/T10947	free	Univ. of Georgia
GTC19068	novel	Univ. of Georgia
KY31-	free	KY Agric. Exp. Station
KYFA0304	free	KY Agric. Exp. Station
KYFA0502	free	KY Agric. Exp. Station
KYFA1014	free	KY Agric. Exp. Station
KYFA9611	free	KY Agric. Exp. Station
KYFA9611GT	free	KY Agric. Exp. Station
KYFA9732/AR584	novel	KY Agric. Exp. Station
PST-5FDS	free	Pure-Seed Testing
PST-5FEDS	free	Pure-Seed Testing
PST-5FMP	free	Pure-Seed Testing
PVF-FTF-2030	free	Pine View Farms
RAD-TF119	free	Radix Research
SETFN97	free	Smith Seed Services
SETFPC-5BK	free	Smith Seed Services

¹ Experimental varieties are not available commercially, but provide an indication of the progress being made by forage breeding companies.

Table 17. Proprietors of bromegrass varieties in current trials.

Variety	Type	Proprietor/KY Distributor
Commercial Varieties-Available for Farm Use		
AAC Torque	hybrid	Brett Young Seeds
Admiral	meadow	Cisco Seeds
Arid	smooth	Mountain View Seeds
Arsenal	meadow	Barenbrug USA
Artillery	meadow	Barenbrug USA
CDC Torsion	meadow	Brett Young Seeds
Champaign	meadow	Mountain View Seeds
MacBeth	meadow	Cisco Seeds
Peak	smooth	Allied Seed
Pella	smooth	DLF Pickseed
Stratus	meadow	Allied Seed
Experimental Varieties¹		
PVF A2	smooth	Pine View Farms
PVF-C2	meadow	Pine View Farms

¹ Experimental varieties are not available commercially, but provide an indication of the progress being made by forage breeding companies.

Table 18. Proprietors of meadow fescue varieties in current trials.

Variety	Proprietor/KY Distributor
Commercial Varieties-Available for Farm Use	
Carpathi	Barenbrug USA
Dells	Mountain View Seeds
Driftless	Barenbrug USA
HDR	Barenbrug USA
Hyperbola	DLF Pickseed
Pradel	Barenbrug USA
Raskila	Columbia Seeds
Experimental Varieties¹	
KYFF1301	Ky Agric. Exp. Station

¹ Experimental varieties are not available commercially, but provide an indication of the progress being made by forage breeding companies.

Table 19. Summary of Kentucky tall fescue yield trials 2009-2025 (yield shown as a percentage of the mean of the commercial varieties in the trial).

Variety	Endophyte Status ¹	Proprietor	Lexington															Princeton								Quicksand					Mean ⁴ (#trials)
			09 ^{2,3}	11	12	13	14	15	16	17	18	19	20	21	22	23	10	12	15	17	19	21	23	13	16	18	21				
			3-yr ⁵	3-yr	2-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr														
Armory	free	Barenbrug USA									98	99												98	95				98(4)		
Baguala	free	Allied Seed						92																						94(2)	
BarElite	free	Barenbrug USA	100																											96(2)	
BARFASTF-43	free	Barenbrug USA									99																				92(2)
BarOptima PLUS E34	novel	Barenbrug USA		107	108	102	99	113	99	90	95	102	101	96	88	99	99	100	96	105	102	99	99	93	118	85	81	99(24)			
Bronson	free	Ampac Seed	105	102	99	99			100			110						101	91	103										101(9)	
Brutus	free	Saddle Butte Ag. Inc.				90																									—
Bull	free	Improved Forages		100						100																				99(4)	
Cajun II	free	Smith Seed Services	97		105	99	99	98	107	109	99	104	99	100	98	101		104	91	111		106	90	96	104	113	101(21)				
Cowgirl	free	Rose-AgriSeeds		94											107	100	98												102(4)		
DLFPS-FTF100 Protek	novel	DLF Pickseed									98																			89(2)	
Dominate	free	Allied Seed				90						101								99				106					99(4)		
Drover	free	Barenbrug USA			105	120																								113(2)	
DuraMax GOLD	novel	DLF Pickseed	102																											—	
Enhance	free	Allied Seed	93																											—	
Estancia ArkShield	novel	Mountain View Seeds		106				96		105	99	100	99	115	93		102			102	97	107		103		87	101(14)				
Fawn	free	Smith Seed Services													103														99(2)		
Fillmore(FTF70)	free	DLF Pickseed									103																		—		
Flourish	free	Allied Seed		92														101											97(2)		
FSG 402TF	free	Farm Science Genetics				92													103										98(2)		
Goliath	free	Ampac Seed	100		104														99										101(3)		
Greendale	free	DLF Pickseed								105		98	104	102							113	103						104(6)			
Greendale Protek	novel	DLF Pickseed								106	97										116								106(3)		
HyMark	free	Fraser Seeds	91			104													103										99(3)		
Iliade	free	Columbia Seeds														95							102							—	
Jesup EF	free	Pennington Seed	98	105													103	100											102(4)		
Jesup MaxQ	novel	Pennington Seed	110	103	100	93	106	102	111	104	101		111			100	98	98	103				100	116	105		104(17)				
Jesup MaxQII	novel	Pennington Seed									103		93	96	98								97			105	99(6)				
Kentucky 32	free	Oregro Seeds	93	94		101					83	101						94	101									95(7)			
Kokane	free	Smith Seed Services												81															—		
Kora Protek	novel	DLF Pickseed						101																					86	94(2)	
KY31+	toxic	KY Agric Exp Sta.	102	93	95	103	100	99	103	101	107	71	93	102	96	97	112	101	92	105	105	99	99	110	110	107	118	101(25)			
Lacefield MaxQ II	novel	Pennington Seed				97	104	93	92	94	106	112	100	100	104	96		105	100		97	99	113	102	95	106	101(19)				
Martin2 Protek	novel	DLF Pickseed	104					96			105	97									99								101(6)		
Palatine	free	Mountain View Seeds									101				90														89	93(4)	
Payload	free	Brett Young				89																								111	100(2)
Ranchero	free	Smith Seed Services						92		101	107	96	93	102					96	107		99						105	100(10)		
Select	free	Southern States	98	90	100	97	103	97	102						99	100	99						99	86				98(12)			
SS-0705TFSL	free	Southern States					99	99	106	111	94	110	103	106	103	103		103	101		99	103		101	104	99	103(16)				
STF43	free	Barenbrug USA										91																	—		
Teton II	free	Mountain View Seeds	107	105		96	103												99									91	100(6)		
Texoma MaxQ II	novel	Pennington Seed								111	107	107	83	102							103								96	101(7)	
Tower	free	DLF Pickseed						101			105										96								91	98(4)	
Tower Protek	novel	DLF Pickseed	98					104			102	90									92								81	95(6)	
Triumphant	free	DLF Pickseed								95		103	111								95	106							103(5)		
Triumphant Protek	novel	DLF Pickseed								96	96										97								96(3)		
Tuscany II	free	Seed Research of OR		97															106										102(2)		
Velvet	free	Oregro Seeds								91																			—		
5CAN	free	Brett Young	86																										—		

¹ Free-varieties that do not contain an endophyte. Toxic-KY31+ contains a toxic endophyte. Novel-varieties that contain an endophyte that aids persistence but is not toxic to cattle or horses.

² Year trial was established.

³ Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in the fall of 2016 was harvested three years, so the final report would be "2019 Tall Fescue Report" archived in the UK Forage website (<https://forages.mgcafe.uky.edu>).

⁴ Mean only presented when respective variety was included in two or more trials.

⁵ Number of years of data.

Table 20. Summary of Kentucky bromegrass yield trials at Lexington 2006-2025 (yield shown as a percentage of the mean of the commercial varieties in the trial).

Variety	Type	Proprietor/KY Distributor	2006 ^{1,2}	2008	2010	2012	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	Mean ³ (#trials)	
			4-yr ⁴	3-yr	3-yr	3-yr	3-yr	3-yr	4-yr	3-yr	3-yr	3-yr	3-yr	3-yr	3-yr	2-yr		
AAC Torque	hybrid	Brett Young Seeds														83	97	90(2)
AC Knowles	hybrid	Agriculture Canada	85		82	102	89											89(4)
Admiral	meadow	Cisco Seeds							107	106	100	100	102	102	100	107		103(8)
Arid	smooth	Mountain View Seeds							94	93						100	88	94(4)
Arsenal	meadow	Barenbrug USA									106	106	104	112	113	119		110(6)
Artillery	smooth	Barenbrug USA									100	99	89	92	99	103		97(6)
Bigfoot	hybrid	Grassland Oregon	108	116	105													110(3)
Canterbury	mountain	Barenbrug USA		79														—
Carlton	smooth	Pickseed USA				82	95				85							87(3)
CDC Torsion	meadow	Brett Young Seeds														110	114	112(2)
Champaign	meadow	Mountain View Seeds														98	94	96(2)
Doina	smooth	Barenbrug USA		114	108													111(2)
Fleet	meadow	Agriculture Canada	110			109												110(2)
Hakari	Alaska	Barenbrug USA		85	85													85(2)
MacBeth	meadow	Cisco Seeds		136	119	107	116	107	103	123	100	95	105	104	96	91		108(13)
Olga	smooth	Barenbrug USA		116	101													109(2)
Peak	smooth	Allied Seed		97		100		93	95	88	103		99	89	90	92		95(10)
Persister	prairie	DLF Pickseed		72														—
RAD-BI29	smooth	Columbia Seeds	96	86														91(2)
Stratus	meadow	Allied Seed													101	107	97	102(3)

¹ Year trial was established.

² Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in the fall of 2021 was harvested three years, so the final report would be "2024 Tall Fescue, Bromegrass, and Meadow Fescue Report" archived in the UK Forage website (<https://forages.mgcafe.uky.edu/>).

³ Mean only presented when respective variety was included in two or more trials.

⁴ Number of years of data.

Table 21. Summary of meadow fescue yield trials at Lexington 2019-2025 (yield shown as a percentage of the mean of the commercial varieties in the trial).

Variety	Proprietor/KY Distributor	2019 ^{1,2}	2020	2021	2022	2023	Mean ³ (#trials)
		3-yr ⁴	3-yr	3-yr	3-yr	2-yr	
HDR	Barenbrug USA	95	105	101		104	101(4)
Hyperbola	DLF Pickseed				92	92	92(2)
Pradel	Barenbrug USA	105	88	99	103	97	98(5)
Raskila	Columbia Seeds		103	100	105	107	104(4)

¹ Year trial was established.

² Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in the fall of 2021 was harvested three years, so the final report would be "2024 Tall Fescue, Bromegrass, and Meadow Fescue Report" archived in the UK Forage website (<https://forages.mgcafe.uky.edu/>).

³ Mean only presented when respective variety was included in two or more trials.

⁴ Number of years of data.

Notes

Notes

2025 Tall Fescue, Bromegrass, and Meadow Fescue Report

Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.

The College of Agriculture, Food and Environment is an Equal Opportunity Organization.
1-2026